

Developing Applications for

Everyone

Session ???

Tamar E. Granor

Voice: 215-635-1958

Email: tamar_granor@compuserve.com

Overview

For applications to be truly usable for everyone, including individuals with physical challenges

such as visual impairments, hearing difficulties, and problems with mobility, they must be

designed for accessibility from day one. The good news is that the process of ensuring that

people with disabilities can use an application is likely to improve the interface for all users. This

session will look at the design issues involved, tools available to make applications accessible to

all users, and demonstrate techniques in VFP that improve the user interface as well as increasing

accessibility.

Why worry about physical challenges?
When you hear that someone is "physically challenged," "disabled" or "handicapped," you

probably think of a person in a wheelchair or a blind person. However, many people have smaller

disabilities that impact their use of computers. Overall, about 20% of Americans have one or

more physical disabilities. (Most of the statistics in this section apply to Americans, solely

because those statistics are more readily available than numbers for other countries or the whole

world.)

One of the most common disabilities is reduced vision. As people age, their vision deteriorates,

both in acuity and color perception. By their mid-40's, many people notice that they can't read

what they could before. According to one source (AllAboutVision.Com), 17% of Americans 45

and over report "some type of vision impairment even when wearing glasses or contacts."

There are other kinds of visual disabilities besides total blindness or low vision, too. Among

them, color blindness is extremely common. Somewhere between 5% and 10% of men and about

1% of women have some form of color blindness.

Hearing impairments (either deafness or reduced hearing) affect more than 8% of Americans.

Again, this disability affects people more as they age. By age 65, about a third of Americans have

some hearing loss.

Mobility impairments cover a wide range of issues, including paralysis, muscle weakness, poor

muscle control, joint movement limitations, and missing limbs or digits. Over a million

Americans use a wheelchair, while about 6.5 million use some form of mobility aid.

Finally, seizure disorders affect about 1 person in 15. For some, seizures are chronic while others

have only a single seizure and never have a recurrence.

These statistics offer the strongest reason for ensuring that those with disabilities can use your

applications. With one-fifth of the population coping with at least one disability, creating

applications that exclude users with disabilities is likely to have serious economic consequences.

However, there are other reasons as well. The best known is the legal reason. In the US, the

Americans with Disabilities Act, passed in 1990, guarantees a "reasonable accommodation" in

both work and living to people with disabilities. Companies with 15 or more employees are

affected by these regulations, and their employees can reasonably expect them to provide

accessible software and hardware. Other countries have similar laws. For example, the Disability

Discrimination Act of 1995 sets out the rights of people with disabilities in the UK.

There's a financial incentive as well. Section 508 of the Rehabilitation Act enforces guidelines

like those of the ADA on the federal government and any organization receiving federal funds.

Since the federal government is the largest purchaser of software in the US, providing accessible

software could make the difference between success and failure in the marketplace.

Finally, there's an ethical reason to make software accessible to the widest possible range of

people. Put simply, it's the right thing to do.

What are the issues?
Many applications are difficult or impossible for those with physical challenges to use. The

problems vary depending on the individual user's disabilities.

Vision-related problems
For users who are color-blind, there's one basic problem. Application developers often hard-code

color choices. If those colors don't provide sufficient contrast, this user may not be able to

distinguish the various components of the application.

Color contrast is also an issue for users with reduced vision. For these users, however, the size of

text is also an issue. Small lettering may be unreadable for them. Users with impaired vision may

also find it difficult to read text that appears on a patterned background.

Users who are totally blind generally use a screen reader program to tell them what's being

displayed. These people can't use any software that doesn't cooperate with such tools.

Hearing-related problems
In general, most applications present fewer problems for people with hearing disabilities than for

those with other disabilities. However, applications that provide instructions using sounds or

other audio with no visual indicators do present an obstacle to users who are totally deaf or

hearing-impaired. Sound-only instructions can also be a problem for applications that run in a

noisy environment, like a factory floor.

Mobility-related problems
There are a variety of accessibility issues for people with mobility impairments. Some users are

unable to use a mouse, so need all options to be available from the keyboard. Others can use a

mouse, but can't manage fine control of it. For other users, the keyboard provides impediments.

For example, some users are unable to press key combinations. Other users need extra time to

make choices or enter data. Some users are unable to use their hands at all and must use a mouth

stick, eye movement or voice for input.

How can applications be accessible?
Making applications accessible takes in a variety of approaches. Some solutions are hardware-

based, such as providing alternative input devices. However, even when such devices are used,

the software must be able to receive input from them.

Other solutions are system-based. Windows includes a number of tools that provide access for

users with disabilities. The set of tools available has grown in recent versions of Windows. In

addition, more of the tools are built right into newer Windows versions, while older ones

required add-ons.

Finally, individual applications make themselves accessible in several ways. The first is by

supporting the accessibility tools. In addition, applications can help users with disabilities by

following Windows standards and by applying the user's Windows choices in such things as

colors and sounds.

What Accessibility tools does Windows provide?
Recent versions of Windows offer a large collection of tools that aid users with disabilities. The

complete list of built-in tools is available at

http://www.microsoft.com/enable/products/chartwindows.htm. Here's an overview of Windows'

accessibility features. In the discussions below, "applications" generally means both Windows

and application programs running in Windows.

SoundSentry

This tool tells applications to provide a visual indication that a sound has been played. The user

can choose whether the indicator is a flash of the active window's title bar, a flash of the entire

active window or a flash of the desktop.

ShowSounds

This tool goes farther than SoundSentry. Think of it as closed captioning for applications. It tells

applications to show text on screen when speech or a sound is played. Unfortunately, in my

testing, I couldn't find any applications that supported this capability.

ToggleKeys

When enabled, this tool plays a sound when any of the keyboard toggle keys (Caps Lock, Num

Lock or Scroll Lock) is hit. A different sound is played when the toggle is turned on than when

it's turned off.

StickyKeys

For some users, holding down a key combination is extremely difficult or impossible. Turning

StickyKeys on indicates that the modifier keys (Alt and Ctrl) can be used in sequence with other

keys rather than simultaneously.

FilterKeys

Some users with impaired motor skills tend to hit keys accidentally or to hold keys down too

long (so they start to repeat). This feature lets the user customize the behavior of the keyboard in

several ways. The user can indicate that repeated keystrokes are to be ignored or can set a time

threshold that must occur between keystrokes to allow the same key to be repeated. The user can

also indicated how long a key must be pressed to be accepted and how long a key must be

pressed to begin repeating.

MouseKeys

This setting lets users perform mouse functions from the keyboard. It turns the numeric keypad

into a mouse substitute, using most of the numeric keys to navigate, the 5 key for click and the +

http://www.microsoft.com/enable/products/chartwindows.htm

key for double-click. Keys are also designated to indicate to which button a click or double-click

applies.

SerialKeys

This feature enables the use of alternative input devices attached to the computer's serial port.

The device can replace the keyboard or the mouse and must be programmed to send the

appropriate key definitions. This Knowledge Base article provides detailed information on setting

up an alternative input device: http://support.microsoft.com/support/kb/articles/Q260/5/17.ASP.

Sound schemes

Windows allows users to choose the sounds played for various system actions. Individual sounds

can be organized into schemes. Users with impaired vision can choose sound schemes or design

their own to provide unique sounds for a variety of system and application actions. Users with

hearing impairments can choose sounds that they are able to hear.

Color schemes

As with sounds, users can customize the colors they see in Windows. Users who are color-blind

or have reduced vision can choose colors that maximize visibility for them. The built-in high-

contrast color schemes are specifically designed to aid users with visual disabilities. These color

schemes are available in a variety of sizes as well.

Pointer schemes

The icons used to represent the mouse pointer can also be customized. The schemes provided

include some with larger icons and, in some versions of Windows, inverted colors to improve

contrast.

Pointer control

The different versions of Windows provide various options for controlling the mouse (or other

pointer). Among the items that can be set by the user are the speed at which the pointer moves

and the speed at which it accelerates as it continues to move, the speed of a double-click, and the

actions assigned to the different mouse buttons (that is, which button corresponds to the primary

click and which means "right-click").

Users can also determine whether the mouse immediately moves to the default button in dialogs,

and, in some versions, whether the pointer disappears while the user is typing.

The ClickLock feature lets the user set the mouse to highlight or drag without having to hold the

button down. The length of time the button must be held down to begin highlighting or dragging

is configurable. This feature is available with all pointer devices in newer versions of Windows

and only with Intellipoint devices in older versions.

http://support.microsoft.com/support/kb/articles/Q260/5/17.ASP

Wheel control

For pointers with a wheel, there's one more configurable feature. The user can determine how

much the display scrolls when the wheel is rolled.

Magnifier

This tool provides an on-screen magnifying glass. A dockable window (docked at the top by

default) displays a blown-up version of the display. The magnification factor is configurable, as

are several other behaviors. Magnifier is built into newer versions of Windows.

Narrator

This tool reads Windows aloud. Aimed at users with serious visual handicaps, Narrator uses a

computer-synthesized voice to identify the active window and to read windows contents.

Narrator has several options, including modifying the synthesized voice. Narrator is included

only in Windows 2000 and Windows XP.

On-Screen Keyboard

For users with impaired mobility who cannot use a keyboard, the On-Screen Keyboard provides

an alternate method of typing. The tool displays a keyboard on the screen and allows the user to

choose characters by clicking or by holding the mouse over the character (the time necessary to

consider a key chosen is configurable). A third choice scans the "keyboard" continuously and

makes a choice based on a single input from the user. First, rows are highlighted and user input

selects a row. Then, the keys on that row are highlighted one by one and an input chooses that

key. The keyboard itself can be configured in several ways, including the number of keys. The

On-Screen Keyboard is provided with Windows 2000 and later.

Other tools

Many third-party accessibility tools are available and, in fact, Microsoft indicates that Magnifier,

Narrator and the On-Screen Keyboard aren't really meant for full-time use. For a list of third-

party accessibility tools, go to http://www.microsoft.com/enable/products/aids.asp.

Voice input

Although Windows doesn't provide any tools for voice input, it does support it and there are a

number of speech recognition products that allow users to work within Windows. Such tools are

valuable for users with mobility impairments that prevent them from using a keyboard or a

mouse.

Accessibility settings management

In addition to the actual tools, Windows gives the user several options for managing the

accessibility settings. Accessibility settings are stored for individual users of a machine. When

saving settings from the Accessibility applet, users can indicate that the current settings should be

http://www.microsoft.com/enable/products/aids.asp

the default for new users. In Windows 2000 and later, accessibility settings can be stored to a file

and retrieved later.

Accessibility settings can be configured to turn off automatically after the system is idle for a

specified length of time.

Windows 2000 offers a Utility Manager, which centralizes control of Narrator, Magnifier and

On-Screen Keyboard.

What should applications do?
The accessibility tools work at the operating system level, so what role do individual applications

play? The role varies depending which accessibility tool you look at. The tools can be divided

into two groups – those that do something at the system level (Microsoft calls these "Built-in

accessibility features") and those that let the user configure behavior ("Accessibility

parameters").

Built-in accessibility features include such things as FilterKeys, MouseKeys and SoundSentry.

They're managed at the system level and shouldn't require any special actions by applications.

Accessibility parameters include items like sound schemes, color schemes and pointer schemes,

and ShowSounds. Windows provides mechanisms for determining the user's settings and

applications should use those settings appropriately.

General Design Issues
There are a number of design choices that help to make an application more accessible. Many of

them fall into the general category of adhering to standards.

Using system tools wherever possible makes it easier for accessibility aids to render the

application (whether by magnifying it or by reading it to the user). This means both using system

dialogs where appropriate and putting text on the screen through the normal text-drawing

mechanisms. Among other things, providing text as bitmaps creates difficulties for accessibility

aids. Using the system's pointers is another way to assist accessibility aids; typically, they use the

system pointer to determine focus. Following the user's color choices also falls into this category.

Consistent design, where each form in an application follows the same pattern, aids users with

limited vision and limited mobility as they can learn the pattern and take advantage of it. Not

only should forms be consistent within the application, but they should follow operating system

guidelines where they exist. Make sure that the tab order on each form follows the visual order in

a logical way. Keep in mind that someone using a magnifier can see only a small portion of the

screen at once, so consistency becomes far more important than for other users.

Providing keyboard alternatives for all mouse actions enables those who cannot use a mouse to

work with the application. (Including all commands in the menu also helps all users learn what

options the application provides.) In addition, providing multiple ways to accomplish tasks

increases the chance that a given user can find a technique that works for him.

Don't count on pop-up text (like tooltips) to let the user know what his options are. Many

accessibility aids can't read tooltips and similar text. Along the same lines, stay away from fake

buttons and hot spots since screen readers may not be able to identify them. If you do use one

control to mimic another, give it a name that identifies its use rather than its origins.

Make important sounds visible. When sound is used as an adjunct to display, it's not necessary to

take special actions, but when sound is used to alert users or provide narration, it's important to

provide a non-auditory alternative. The easiest way to accomplish this is to cooperate with

existing aids (SoundSentry and ShowSounds). While sound-only techniques can be a problem for

users with impaired hearing, keep in mind that adding sounds for feedback can be helpful to

users with visual impairments.

Avoid flickering or flashing screens. They can trigger seizures in some people with epilepsy.

For an application to be truly accessible, its documentation must also be accessible. Where

possible, make documentation available in a variety of formats, including electronic, print (a

variety of print sizes), and audio. When a choice must be made as to which to provide, choose

electronic since it can be transformed to the other formats most easily. Avoid making graphics in

the documentation essential to comprehension – provide enough description that a user who can't

see them can still follow the discussion. Provide Help using standard Help tools, which are open

to accessibility aids.

When referring to users with disabilities, whether in the user interface or the documentation, use

"people-first" language. That is, talk about "users with disabilities" rather than "disabled users."

What does VFP provide?
Visual FoxPro is a fairly high-level language. As a result, it's possible to use many of the user's

settings without having to probe the operating system for them. For others, though, you'll need to

make API calls or query the Registry.

Setting colors
One of the easiest things to do in VFP is apply the user's color settings. This is controlled by the

ColorSource property of forms and controls. By default, newly created forms pick up the current

Windows settings for dialogs; in this case, ColorSource = 4-Windows Control Panel (3D

Colors). Change ColorSource to 5-Windows Control Panel (Windows Colors) to use the current

settings for documents. For controls, the choices for ColorSource are a little different, but the

right choice for creating an accessible application is 4-Windows Colors.

There are times when you need to set the color of a particular object explicitly, generally to make

it stand out. In those situations, rather than hard-coding the color, it's best to use the GetSysColor

API function to extract an appropriate color from the user's choices and apply it. To use

GetSysColor, you must first declare it, like this:

DECLARE Integer GetSysColor IN Win32API Integer nIndex

To use the function, call it like this:

nColor = GetSysColor(nItem)

nItem is a value that indicates which color you want from the various settings. Table 1 shows a

list of the constant values for the various settings. (Be aware that API function names are case-

sensitive, so you must reference this function as GetSysColor, not GETSYSCOLOR,

Getsyscolor, or another variant.)

Table 1 Windows color constants – Use these constants with GetSysColor() to determine the color of a

particular interface element. Items marked as N/A in the last column are set automatically based on

other choices.

Constant Value Meaning Setting in

Appearance dialog

COLOR_SCROLLBAR 0 Scrollbar color N/A

COLOR_BACKGROUND 1 Color of the

background with no

wallpaper

Desktop

COLOR_ACTIVECAPTION 2 Caption of active

window

Active Title Bar

(color setting)

COLOR_INACTIVECAPTION 3 Caption of inactive

window

Inactive Title Bar

(color setting)

COLOR_MENU 4 Menu Menu (color setting)

COLOR_WINDOW 5 Windows background Window (color

setting)

COLOR_WINDOWFRAME 6 Window frame N/A

COLOR_MENUTEXT 7 Text in menus Menu (font color

setting)

COLOR_WINDOWTEXT 8 Text in windows Window (font color

setting) or Message

Box (font color

setting)

COLOR_CAPTIONTEXT 9 Text in active window

caption

Active Title Bar (font

color setting)

COLOR_ACTIVEBORDER 10 Border of active

window

Active Window

Border

COLOR_INACTIVEBORDER 11 Border of inactive

window

Inactive Window

Border

COLOR_APPWORKSPACE 12 Background of MDI

desktop

Application

Background

COLOR_HIGHLIGHT 13 Selected item

background

Selected Items (color

setting)

COLOR_HIGHLIGHTTEXT 14 Selected menu item

(text color)

Selected Items (font

color setting)

COLOR_BTNFACE 15 Button 3D Objects (color

setting)

COLOR_BTNSHADOW 16 3D shading of button N/A

COLOR_GRAYTEXT 17 Disabled text N/A

COLOR_BTNTEXT 18 Button text 3D Objects (font

color setting)

COLOR_INACTIVECAPTIONTEXT 19 Text of inactive

window caption

Inactive Title Bar

(font color setting)

COLOR_BTNHIGHLIGHT 20 3D highlight of button N/A

COLOR_3DDKSHADOW 21 Edge color for dark

side of 3-D objects

N/A

COLOR_3DLIGHT 22 Edge color for light

side of 3-D objects

3D Objects (color

setting)

COLOR_INFOTEXT 23 Tooltip text color Tooltip (font color

setting)

COLOR_INFOBK 24 Tooltip background

color

Tooltip (color

setting)

COLOR_HOTLIGHT 26 Color for hot-tracked

item (Win 98 and

later)

N/A

COLOR_2NDACTIVECAPTION 27 Second active window

color for gradient title

bars (Win 98 and

later)

Active Title Bar

(Color 2)

COLOR_2NDINACTIVECAPTION 28 Second inactive

window color for

gradient title bars

(Win 98 and later)

Inactive Title Bar

(Color 2)

COLOR_MENUHILIGHT 29 Menu item highlight

for flat menus (Win

XP only)

N/A

COLOR_MENUBAR 30 Menu background

color for flat menus

(Win XP only)

N/A

For example, you might choose to use the Selected Item color as the border color for a shape or

image. Along the same lines, you might choose to use the Selected Item text color as the fill color

for a shape. These colors can make the shape or image stand out while still honoring the user's

choices and providing appropriate contrast between the colors used. Here's the code you can use

in a Shape object's Init:

LOCAL nHighlightColor, nFillColor

DECLARE INTEGER GetSysColor IN Win32API INTEGER nIndex

nHighlightColor = GetSysColor(13)

nFillColor = GetSysColor(14)

This.BorderColor = nHighlightColor

This.FillColor = nFillColor

There is one problem with setting colors this way. A user may change his color scheme while the

form is running. The form ChangeHighlight.SCX in the session materials demonstrates a

technique that keeps the form colors in synch with the user's colors. It uses the ActiveX SysInfo

control to respond to changes in the system colors.

Using System Pointers
As with colors, it's easy to apply the user's chosen pointers in VFP. The MousePointer property

of forms and controls lets you specify which pointer to use when the mouse is over a particular

object. Set it to 0 (the default) to use the normal pointer for that kind of object. Set it to one of

the other values to change the pointer type. The appropriate cursor is used, based on what's been

specified in the Mouse applet.

The list of choices for MousePointer doesn't include all the pointer types that can be specified – a

few are omitted. However, finding out what cursor a user has specified for a given task is quite

hard. While pointer information is stored in the Registry under the key

HKEY_CURRENT_USER\Control Panel\Cursors, if the user has never specified a cursor other

than the default, that key has no values. If the user has changed cursors, but is now using the

default, the key has values, but the values have only names and no data. The default pointers

don't exist as files – they're Windows resources. Extracting them in a form that VFP can use is a

non-trivial task and probably not worth the trouble it would take, given the range of pointers

available through MousePointer.

Using System Sounds
Getting your hands on the user's chosen sounds is more difficult. They're stored in the Registry

and you have to go fishing to pull them out. Before looking at what's involved, let's see how to

play a sound once you access it. The PlaySound API function can play both system sounds and

WAV files. You declare it like this:

DECLARE INTEGER PlaySound IN winmm.dll

 STRING cName, INTEGER hModule, INTEGER nFlags

Once the function is declared, you can call it. For our purposes, you can just pass 0 for the second

parameter (hModule). The first parameter is either the filename (with path) of the WAV file to

play or the name of a system sound. When you play a WAV file, pass 0 for the nFlags parameter;

to play a system sound, pass 0x10000 ("0x" indicates a hexadecimal value). For example, to play

the "Asterisk" sound, use:

PlaySound("SystemAsterisk", 0, 0x10000)

To play the file Chord.Wav (which is the default for the Asterisk sound), use:

PlaySound("Chord.Wav", 0, 0)

The next step is finding the sound you want. Sounds defined in Windows can be played by giving

their names, as in the first example above. But, as the example also shows, the internal names of

the sounds aren't the same ones displayed in the Sounds applet. To find the internal names of

sounds, look in the Registry under the key HKEY_CURRENT_USER\AppEvents\EventLabels.

There's a list there of all the system sounds and the associated value for each is the name shown

in the Sounds applet.

Another alternative is to define sounds for your application and store them in the Registry. That

allows the user to manage them through the Sounds applet, just like any other sounds. The easiest

way to add your sound items to the registry and to retrieve the user's choices in your application

is to use the Registry class that's part of the FoxPro Foundation classes (Registry in

Registry.VCX).

Sound information for applications is stored at

HKEY_CURRENT_USER\AppEvents\Schemes\Apps. There are two levels of keys below that.

The next is the application itself and the bottom level is the sound name (as it appears in the

Sounds applet, unless a name is defined in the EventLabels section described above). Both the

application and the individual sounds each need one unnamed value. For the application, it's the

name to appear in the Sounds applet. For the individual sounds, it's the WAV file to play.

The SetSounds function shown here (and included in the session materials) adds a list of sounds

to the registry, so that the user can choose sound files through the Sounds applet.

* Create registry entries for an application and its sounds

LPARAMETERS cInternalName, cAppName, aSoundList

 * cInternalName = the internal name of the application

 * - used as the registry key

 * cAppName = the name of the application to appear

 * in the Sounds applet

 * aSoundList = two-column array - each row contains name

 * of a sound and the WAV file to play for it.

#DEFINE HKEY_CURRENT_USER -2147483647

* Check parameters

ASSERT VARTYPE(cInternalName) = "C" and NOT EMPTY(cInternalName) ;

 MESSAGE "AddSounds: Must pass cInternalName"

IF VARTYPE(cInternalName) <> "C" OR EMPTY(cInternalName)

 ERROR 11

 RETURN 0

ENDIF

ASSERT VARTYPE(cAppName) = "C" and NOT EMPTY(cAppName) ;

 MESSAGE "AddSounds: Must pass cAppName"

IF VARTYPE(cAppName) <> "C" OR EMPTY(cAppName)

 ERROR 11

 RETURN 0

ENDIF

ASSERT TYPE("aSoundList[1]")="C" ;

 MESSAGE "AddSounds: Must pass array of sounds"

IF TYPE("aSoundList[1]")<> "C"

 ERROR 11

 RETURN 0

ENDIF

ASSERT ALEN(aSoundList,2) = 2 ;

 MESSAGE "AddSounds: Array must have two columns"

IF ALEN(aSoundList,2) <> 2

 ERROR 230

 RETURN 0

ENDIF

* If we get this far, we have parameters. Still should

* check array contents as we go.

LOCAL oRegisty, cStartKey, cNullVal, nSoundCount, nSound

LOCAL nNewSoundCount

oRegistry = NEWOBJECT("Registry",HOME()+"FFC\Registry")

WITH oRegistry

 cStartKey = "AppEvents\Schemes\Apps"

 * Create a null string

 cNullVal = ""

 cNullVal = .null.

 nNewSoundCount = 0

 IF .IsKey(cStartKey, HKEY_CURRENT_USER)

 * The key we need exists. Go for it.

 * Start by creating the key for the application

 IF .SetRegKey(cNullVal,cAppName,cStartKey + "\" + cInternalName,;

 HKEY_CURRENT_USER, .t.) = 0

 * Now add the sounds, one by one

 nSoundCount = ALEN(aSoundList, 1)

 FOR nSound = 1 TO nSoundCount

 * Check that both items are provided and that

 * the file exists

 IF TYPE("aSoundList[nSound, 1]") = "C" ;

 and TYPE("aSoundList[nSound, 2]") = "C" ;

 and FILE(aSoundList[nSound, 2])

 * This one looks good, so store the information

 IF .SetRegKey(cNullVal, aSoundList[nSound, 2], ;

 cStartKey + "\" + cInternalName + "\" + ;

 aSoundList[nSound, 1] + "\.Current", ;

 HKEY_CURRENT_USER, .t.) = 0

 nNewSoundCount = nNewSoundCount + 1

 ENDIF

 ENDIF

 ENDFOR

 ELSE

 ERROR "Can't add registry key"

 ENDIF

 ELSE

 ERROR "Registry key does not exist"

 ENDIF

ENDWITH

RETURN nNewSoundCount

To use the function, create a two-column array, putting the names for the sounds in the first

column and the default WAV file for each in the second. Then, call the function, like this:

DIMENSION aSounds[3, 2]

aSounds[1,1] = "Start"

aSounds[1,2] = "AnnoyApp\Sounds\Startup.WAV"

aSounds[2,1] = "Error"

aSounds[2,2] = "AnnoyApp\Sounds\Buzzer.WAV"

aSounds[3,1] = "End"

aSounds[3,2] = "AnnoyApp\Sounds\Byebye.WAV"

nSoundsAdded = SetSounds("Annoying","My Annoying Application", @aSounds)

The function returns the number of sound items actually stored in the registry, so you can check

whether a problem occurred. The session materials include AccDemoSounds.PRG, which

registers a few sounds for the demo application.

Once you store the sound information, you can use the sounds in your application by retrieving it

from the Registry. Again, the Registry class makes this pretty easy. For example, to extract the

sound we just stored for an Error in our application, use code like this:

#DEFINE HKEY_CURRENT_USER -2147483647

oRegistry = NEWOBJECT("Registry",HOME()+"FFC\Registry")

cValue = ""

IF .GetRegKey("", @cValue, ;

 "AppEvents\Schemes\Apps\Annoying\Error\.Current", ;

 HKEY_CURRENT_USER) = 0

 * Got the sound. Now we can play it.

 DECLARE INTEGER PlaySound IN winmm.dll ;

 STRING cName, INTEGER hModule, INTEGER nFlags

 PlaySound(cValue, 0, 0)

ENDIF

The program PlayAppSound.PRG, included in the session materials, accepts a sound name as

parameter, and finds and plays that sound. The materials also include ClearSounds.PRG, which

removes the registry entries for all sounds for a specified application, and

AccDemoClearSounds.PRG, which uses ClearSounds to remove the entries for the demo

application.

Managing fonts
The first font-related thing your application can do for accessibility is make sure that it works

properly if the user chooses Large Fonts (or a custom font size) in the Display Properties applet.

A surprising number of applications haven't been tested with large fonts and, as a result, have

text cut off in some labels and controls when that setting is chosen. (You'll find some examples

among the VFP Solutions examples in VFP 6 and earlier versions. Many of them, including the

main form of the Solutions application, have display issues with large fonts. These problems

have been fixed in VFP 7.)

Dealing with large fonts is pretty simple. Use only scalable fonts. In particular, stay away from

MS Sans Serif, a commonly-used non-TrueType font. You can recognize scalable fonts by the

TrueType or OpenType logo in the Fonts dialog.

The font users see when entering data in an application is usually controlled within the

application. Most applications provide a Font dialog to let the user set the font. In fact, in many

applications, the user can set different fonts for different data. For example, in Word, every

character can use different settings.

Entering data in a database application is somewhat different than typing a document or entering

spreadsheet data, so you probably won't want to allow control at the level that Word does.

Nonetheless, user with visual impairments (including older users) will appreciate a way to "bump

the font" of your application. In principle, the GetFont() function and the SetAll method make it

easy to give the user this control. Here's some code that lets the user choose a font and applies it

to a form:

* Assume this is in a form-level method

WITH This

 cName = .FontName

 nSize = .FontSize

 lBold = .FontBold

 lItalic = .FontItalic

ENDWITH

IF This.ChangeFont(@cName, @nSize, @lBold, @lItalic)

 THIS.Setall("FontName", cName)

 This.Setall("FontSize", nSize)

 This.Setall("FontBold, lBold)

 This.Setall("FontItalic, lItalic)

ENDIF

RETURN

Here's the code for the ChangeFont method:

* Let the user choose a font, starting from a specified font

LPARAMETERS tcFontName, tnFontSize, tlFontBold, tlFontItalic

LOCAL cFontName, nFontSize, cStyle

IF PCOUNT() < 4

 RETURN .F.

ELSE

 IF VarType(tcFontName) = "C"

 cFontName = tcFontName

 ELSE

 cFontName = "Arial"

 ENDIF

 IF VarType(tnFontSize) <> "N"

 nFontSize = tnFontSize

 ELSE

 nFontSize = 10

 ENDIF

 cStyle = ""

 IF VarType(tlFontBold) = "L" AND tlFontBold

 cStyle = cStyle + "B"

 ENDIF

 IF VarType(tlFontItalic) = "L" AND tlFontItalic

 cStyle = cStyle + "I"

 ENDIF

 * Ask the user for a font

 cFontString = GetFont(cFontName, nFontSize, cStyle)

ENDIF

IF EMPTY(cFontString)

 * User cancelled

 RETURN .F.

ELSE

 * Parse the chosen into its components

 cFontString = CHRTRAN(cFontString, ",", CHR(13))

 ALINES(aFontInfo,cFontString)

 tcFontName = aFontInfo[1]

 tnFontSize = VAL(aFontInfo[2])

 IF "B"$aFontInfo[3]

 tlFontBold = .T.

 ELSE

 tlFontBold = .F.

 ENDIF

 IF "I"$aFontInfo[3]

 tlFontItalic = .T.

 ELSE

 tlFontItalic = .F.

 ENDIF

ENDIF

RETURN .T.

However, this approach has several problems. First, it assumes that every text item on the form

should use the same font in the same size with the same characteristics. That's unlikely to be the

case. There's a second problem as well – enlarging fonts may cause controls on the form to

overlap. Finally, once a user sets a font, he's going to expect the application to remember it.

There are solutions to all of these problems. The cusFontHandler class in the session materials

allows the user to choose a new font and size and then applies it proportionally to the contained

objects. It uses the cusResizer class to enlarge controls as needed and reposition them, again

proportionally. (cusResizer is based on the cusResizer class in 1001 Things You Wanted to Know

About Visual FoxPro, by Akins, Kramek and Schummer.)

The session materials also include a set of classes for storing values so they can be restored. The

class cusPersistFonts shows how to store the necessary font, size and position information so that

the form looks the same when the user opens it again. For demonstration purposes, this class

stores the data in a table; you might prefer to store it in the Registry or use another storage

mechanism. (cusPersistFonts is a descendent of Doug Hennig's sfPersistent class, also included

in the session materials.)

Cooperating with accessibility tools
VFP 7 is far more able to work with accessibility tools than earlier versions of VFP because it

supports the IAccessible interface. This means that tools like Magnifier and Narrator can see

each individual control on the form. With older versions of VFP, items below the form level

weren't visible to such tools. Best of all, you don't have to do anything in your applications to

provide this ability.

There are some things you can do, though, that will make it easier for users who work with

Accessibility tools.

To aid Narrator and other screen readers, make sure that controls have both informative names

and associated labels, where appropriate. In general, screen readers use the Caption property, if it

has one, to identify a control.

Their behavior for other controls varies. Narrator uses the control's Name. Some screen readers

associate a label with the control and use that to identify it. The label may be picked by its

proximity to the control (above it or to the left) or by the tab order. Make sure that you set an

appropriate tab order and that your labels for textboxes and editboxes are positioned so that a

screen reader will be able to associate them with the right control – in general, that means that the

label should be either above or to the left of the control it labels.

Make sure that controls that can have a graphic, like checkboxes and buttons, also include a text

Caption. A screen reader can't read a graphics file.

Making forms navigable
It's always a good idea to set the tab order in forms so that it roughly corresponds to the visual

order of the form. That's even more important for accessible applications. Focus that jumps all

over the form is difficult for users to follow. For someone using an accessibility aid, such jumps

can be very confusing.

While users can tab through the controls on a form to navigate, providing hot keys for the

controls makes navigation easier, especially for those with motor disabilities. Specify a hot key

for a control by putting "\<" before the chosen letter. While not every control has a caption that

can take a hot key, VFP provides a trick for those that don't. When a control that can't get focus

has a hot key, pressing it sets focus to the next control in the tab order that accepts focus. That is,

to give a textbox or editbox a hot key, put a label right before it in the tab order and give the label

a hot key.

Navigability isn't just for keyboard users. When laying out a form, keep in mind that some people

can use a mouse, but may not have fine control over it. Make controls large enough and space

them far enough apart that users with motor difficulties can land on the control they want. (The

Windows interface guidelines address the issue of the size and spacing of controls.)

Along the same lines, don't put dangerous commands adjacent to commonly used commands,

whether it's in a menu or a toolbar. It's too easy to hit the wrong button or choose the wrong

menu item, especially if your motor skills are impaired.

A number of applications, including Visual FoxPro, offer large toolbar buttons as an option.

When chosen, the toolbar size increases, as does the size of individual buttons. It's pretty easy to

offer this option in your applications. The tbrResize toolbar class, along with the cmdTbrResize

button and chkTbrResize checkbox classes, all in Accessibility.VCX in the session materials,

provide this functionality. (If you want to use other types of objects in your toolbar, you need to

create resizable subclasses for them.) The tbrSample class in Samples.VCX shows an example

and the form Options.SCX shows one way you might implement changing the toolbar size. It

turns out that the hardest part (at least, most time-consuming) of offering toolbars with both large

and small buttons is having the necessary bitmaps (and, where appropriate, bitmap masks) in

both sizes. The cusPersistentOptions class in Persistent.VCX remembers the large toolbar

setting, so you can restore it when the user returns to the application.

Avoiding timing issues
Some users need more time to read messages or to type input. Don't use messages that disappear

after a fixed period of time and don't put a limit on the time a user has to enter data. If an

application needs such time limits, make the time period configurable within the application.

That is, don't use code like:

WAIT WINDOW "Urgent message" TIMEOUT 2

Instead, store the timeout period as, say, an application property, providing a way for the user to

change it. Then, change the code to:

WAIT WINDOW "Urgent message" TIMEOUT oApp.nTimeOut

A less crucial timing item, but one that affects the user's perception of your application is the

incremental search timing in lists and combos. In VFP 6 and earlier versions, this is tied to the

_DBLCLICK system variable. In VFP 7, a new variable, _INCSEEK, controls this setting.

In either case, allowing the user to set the incremental search timeout makes your application

easier to use (and not just for users with disabilities). In VFP 7, you can simply assign the user's

chosen value to _INCSEEK. In older versions, you need to honor the system double-click setting

that's stored in _DBLCLICK, while customizing incremental search. The way to do that is to

change _DBLCLICK in the GotFocus of lists and combos and change it back to its normal

setting in LostFocus. Since this is needed application-wide, a simple approach is to store the

initial _DBLCLICK setting in the application object, along with the user's chosen incremental

search setting. Then, changing it is simple:

* In a combo or list GotFocus

IF VARTYPE("oApp") <> "U" AND PEMSTATUS(oApp,"nIncSeek",5)

 _DBLCLICK = oApp.nIncSeek

ENDIF

* In a combo or list LostFocus

IF VARTYPE("oApp") <> "U" AND PEMSTATUS(oApp,"nDblClick",5)

 _DBLCLICK = oApp.nDblClick

ENDIF

Of course, the best idea is to add this code to your combo and list subclasses.

The incremental search speed stored in _INCSEEK is not a system setting. Allow your users to

control this value and remember their settings. The demo application in the system materials

shows one way to do this.

Word prediction
For users who find typing difficult, having an application anticipate what they're typing can make

life easier. Word prediction works much like Intuit's QuickFill® feature – each time the user

types a letter, the application offers the first (or most common) way to complete the string

entered so far.

In a VFP application, word prediction makes the most sense when there is a potential list of

entries, as with a combobox. The session materials include a set of combo subclasses that

provide a QuickFill capability.

There are situations where you may have a list of potential entries for a textbox and a similar

approach would be helpful. Consider, for example, a textbox for first names. While the set of

possible first names is essentially unlimited, providing word prediction using a list of the 200 or

500 most common first names could cut down the user's typing considerably.

Conclusion
Nearly one in five Americans has at least one disability. Designing software that can be used by

the people in that group is wise economically, and in some settings, may be required legally.

Creating accessible software with Visual FoxPro is not only possible, but easy, as long as that

goal is included from the beginning of the design process.

Acknowledgements
A number of people contributed to this session. Thanks to Marcia Akins and Doug Hennig for

providing code, and to Christof Lange, Helmut Lange, Karl Petersen, Scott Finegan and Patrick

van Hoorn Alkema for answering questions. Special thanks to my favorite physical therapist,

Holly Lankin, for reviewing (and improving) these notes.

Resources

Legal issues
Americans with Disabilities Act home page - http://www.usdoj.gov/crt/ada/adahom1.htm

Q&A on the ADA - http://consumerlawpage.com/brochure/disab.shtml

UK's Disability Discrimination Act - http://www.compactlaw.co.uk/dda95.html

Interface Guidelines
Effective Color Contrast - http://www.lighthouse.org/color_contrast.htm

Guideslines from the Trace Center -

http://www.trace.wisc.edu/docs/software_guidelines/software.htm

The Interface Hall of Shame - http://www.iarchitect.com/mshame.htm

Making Text Legible - http://www.lighthouse.org/print_leg.htm

http://www.usdoj.gov/crt/ada/adahom1.htm
http://consumerlawpage.com/brochure/disab.shtml
http://www.lawrights.co.uk/dda95.html
http://www.lighthouse.org/color_contrast.htm
http://www.trace.wisc.edu/docs/software_guidelines/software.htm
http://www.iarchitect.com/mshame.htm
http://www.lighthouse.org/print_leg.htm

National Center for Accessible Media - http://main.wgbh.org/wgbh/pages/ncam/

Windows Accessibility Features -

http://msdn.microsoft.com/library/default.asp?url=/nhp/Default.asp?contentid=28000544

The Windows User Experience - http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/dnwue/html/welcome.asp?frame=true, especially Chapter 15

Accessibility sites
Cornucopia of Disability Information - http://codi.buffalo.edu/

Microsoft Accessibility Home - http://www.microsoft.com/enable/

National Information Center for Children and Youth with Disabilities - http://www.nichcy.org/

The Trace Center - http://www.trace.wisc.edu/

Disability statistics
Census Bureau statistics (1991-92) -

http://codi.buffalo.edu/graph_based/.demographics/.awd/AWD/AWD.html

Visual impairments - http://www.allaboutvision.com/

Hearing impairments - http://www.zak.co.il/deaf-info/old/home.html,

http://deafness.about.com/health/deafness/

Accessibility and the Web
Evaluating web site accessibility - http://www.cast.org/bobby/

Making web pages more accessible -

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnacc/html/accssblwebpgs.asp

Overview of Web issues - http://www.useit.com/alertbox/990613.html,

http://www.useit.com/alertbox/9610.html

Copyright, 2001, Tamar E. Granor, Ph.D.

http://main.wgbh.org/wgbh/pages/ncam/
http://msdn.microsoft.com/library/default.asp?URL=/library/psdk/msaa/access_4ib7.htm
http://msdn.microsoft.com/library/en-use/dnwue/html/welcome.asp
http://msdn.microsoft.com/library/en-use/dnwue/html/welcome.asp
http://codi.buffalo.edu/
http://www.microsoft.com/enable/
http://www.nichcy.org/
http://www.trace.wisc.edu/
http://codi.buffalo.edu/graph_based/.demographics/.awd/AWD/AWD.html
http://www.allaboutvision.com/
http://www.zak.co.il/deaf-info/old/home.html
http://deafness.about.com/health/deafness/
http://www.cast.org/bobby/
http://www.microsoft.com/enable/dev/web/howto.htm
http://www.useit.com/alertbox/990613.html
http://www.useit.com/alertbox/9610.html

